New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered.
View Article and Find Full Text PDFDuring embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
November 2023
Background And Purpose: The human auditory system develops early in fetal life. This retrospective MR imaging study describes the in vivo prenatal anatomic development of the transverse temporal gyrus (Heschl gyrus) site of the primary auditory cortex.
Materials And Methods: Two hundred seventy-two MR imaging studies of the fetal brain (19-39 weeks' gestational age) acquired from a single institution's 1.
Background And Purpose: Language reorganization has been described in brain lesions with respect to their location and timing, but little is known with respect to their etiology. We used fMRI to investigate the effects of different types of left hemisphere lesions (GL = gliomas, TLE = temporal lobe epilepsy and CA = cavernous angioma) on the topographic intra-hemispheric language plasticity, also considering their location.
Methods: Forty-seven right-handed patients with 3 different left hemisphere lesions (16 GL, 15 TLE and 16 CA) and 17 healthy controls underwent BOLD fMRI with a verb-generation task.
During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated.
View Article and Find Full Text PDF