Publications by authors named "V Paeder"

We propose the application of a new label-free optical technique based on photonic nanostructures to real-time monitor the amyloid-beta 1-42 (Aβ(1-42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer's Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation.

View Article and Find Full Text PDF

A colorimetric sensor providing a direct visual indication of chemical contamination was developed. The sensor is a combination of a chemically sensitive dye layer and a resonant waveguide grating. Enhancement of the light absorption by the photonic structure can be clearly seen.

View Article and Find Full Text PDF

We demonstrate a concurrent polarization-retrieval algorithm based on a multi-heterodyne scanning near-field optical microscopy (MH-SNOM) measurement system. This method relies on calibration of the polarization properties of the MH-SNOM using an isotropic region of the sample in the vicinity of the nanostructures of interest. We experimentally show the effectiveness of the method on a silicon form-birefringent grating (FBG) with significant polarization diversity.

View Article and Find Full Text PDF

Mid-infrared photonics in silicon needs low-loss integrated waveguides. While monocrystalline germanium waveguides on silicon have been proposed, experimental realization has not been reported. Here we demonstrate a germanium strip waveguide on a silicon substrate.

View Article and Find Full Text PDF

A germanium (Ge) strip waveguide on a silicon (Si) substrate is integrated with a microfluidic chip to detect cocaine in tetrachloroethylene (PCE) solutions. In the evanescent field of the waveguide, cocaine absorbs the light near 5.8 μm, which is emitted from a quantum cascade laser.

View Article and Find Full Text PDF