Development of B-cell-based hepatitis C virus (HCV) vaccines that induce broadly neutralizing antibodies (bNAbs) is hindered by extensive sequence diversity and low immunogenicity of envelope glycoprotein vaccine candidates, most notably soluble E2 (sE2). To overcome this, we employed two-component approaches using self-assembling virus-like particles (cVLPs; component 1), displaying monomeric or oligomeric forms of HCV sE2 (sE2 or sE2; component 2). Immunization studies were performed in BALB/c mice and the neutralizing capacity of vaccine-induced antibodies was tested in cultured-virus-neutralizations, using HCV of genotypes 1-6.
View Article and Find Full Text PDFVaccines are a promising therapeutic alternative to monoclonal antibodies against HER-2+ breast cancer. We present the preclinical activity of an ES2B-C001, a VLP-based vaccine being developed for human breast cancer therapy. FVB mice challenged with HER-2+ mammary carcinoma cells QD developed progressive tumors, whereas all mice vaccinated with ES2B-C001+Montanide ISA 51, and 70% of mice vaccinated without adjuvant, remained tumor-free.
View Article and Find Full Text PDFThe COVID-19 pandemic is proving to be one of the most challenging health and social crises ever faced by humanity. Several drugs have been proposed as potential antiviral agents for the treatment of COVID-19 since the beginning of the health crisis. Among them are chloroquine (CQ), hydroxychloroquine (HCQ), ivermectin (IVM), and the combination of QC or HCQ and azithromycin (AZI).
View Article and Find Full Text PDFThe rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD.
View Article and Find Full Text PDFAn effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion.
View Article and Find Full Text PDF