Publications by authors named "V P Ramani"

Introduction: The DMAIC approach is a five-phase improvement cycle which enables the advancement of pre-existing processes and was implemented as part of the "lean" process improvement initiative. The present study aims to improve the work efficiency of chemotherapy daycare unit (CDU) at a cancer hospital. The objectives include studying the process flow of the CDU, estimating the patient wait time (PWT) before infusion at the CDU, and implementing new measures to improve its functioning.

View Article and Find Full Text PDF

CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and transcriptional activity. Beyond its well-characterized role in facilitating cohesin-mediated loop extrusion, CTCF exhibits several cohesin-independent activities relevant to chromatin structure and various nuclear processes. These functions include patterning of nucleosome arrangement and chromatin accessibility through interactions with ATP-dependent chromatin remodelers.

View Article and Find Full Text PDF

Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells.

View Article and Find Full Text PDF

One grand challenge for deploying porous carbons with embedded metal-nitrogen-carbon (M-N-C) moieties as platinum group metal (PGM)-free electrocatalysts in proton-exchange membrane fuel cells is their fast degradation and inferior activity. Here, we report the modulation of the local environment at Fe-N sites via the application of atomic Sn-N sites for simultaneously improved durability and activity. We discovered that Sn-N sites not only promote the formation of the more stable D2 FeNC sites but also invoke a unique D3 SnN-FeN site that is characterized by having atomically dispersed bridged Sn-N and Fe-N.

View Article and Find Full Text PDF