Vavilovskii Zhurnal Genet Selektsii
September 2024
The transition of detached fragments of mitochondrial DNA into the nucleus and their integration into chromosomal DNA is a special kind of genetic variability that highlights the relation between the two genomes and their interaction in a eukaryotic cell. The human genome contains several hundreds of insertions of mtDNA fragments (NUMTS). This paper presents an overview of the current state of research in this area.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
July 2024
The need to mitigate the adverse effects of chemotherapy has driven the exploration of innovative drug delivery approaches. One emerging trend in cancer treatment is the utilization of Drug Delivery Systems (DDSs), facilitated by nanotechnology. Nanoparticles, ranging from 1 nm to 1000 nm, act as carriers for chemotherapeutic agents, enabling precise drug delivery.
View Article and Find Full Text PDFBackground: Hypertrophic cardiomyopathy is the most frequent autosomal dominant disease, yet due to genetic heterogeneity, incomplete penetrance, and phenotype variability, the prognosis of the disease course in pathogenic variant carriers remains an issue. Identifying common patterns among the effects of different genetic variants is important.
Methods: We investigated the cause of familial hypertrophic cardiomyopathy (HCM) in a family with two patients suffering from a particularly severe disease.
Cancer and neurodegenerative disorders present overwhelming challenges for healthcare worldwide. Epidemiological studies showed a decrease in cancer rates in patients with neurodegenerative disorders, including the Huntington disease (HD). Apoptosis is one of the most important processes for both cancer and neurodegeneration.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
March 2023
The structure of diseases in humans is heterogeneous, which is manifested by various combinations of diseases, including comorbidities associated with a common pathogenetic mechanism, as well as diseases that rarely manifest together. Recently, there has been a growing interest in studying the patterns of development of not individual diseases, but entire families associated with common pathogenetic mechanisms and common genes involved in their development. Studies of this problem make it possible to isolate an essential genetic component that controls the formation of disease conglomerates in a complex way through functionally interacting modules of individual genes in gene networks.
View Article and Find Full Text PDF