Memristive devices offer essential properties to become a part of the next-generation computing systems based on neuromorphic principles. Organic memristive devices exhibit a unique set of properties which makes them an indispensable choice for specific applications, such as interfacing with biological systems. While the switching rate of organic devices can be easily adjusted over a wide range through various methods, controlling the switching potential is often more challenging, as this parameter is intricately tied to the materials used.
View Article and Find Full Text PDFThis paper provides a conceptual roadmap for the use of hormonal bioinspired models in a broad range of AI, neuroengineering, or computational systems. The functional signaling nature of hormones provides an example of a reliable multidimensional information management system that can solve parallel multitasks. Two existing examples of hormonal computing bioinspired possibilities are shortly reviewed, and two novel approaches are introduced, with a special emphasis on what researchers propose as hormonal computing for neurorehabilitation in patients with complete spinal cord injuries.
View Article and Find Full Text PDFReservoir computing systems are promising for application in bio-inspired neuromorphic networks as they allow the considerable reduction of training energy and time costs as well as an overall system complexity. Conductive three-dimensional structures with the ability of reversible resistive switching are intensively developed to be applied in such systems. Nonwoven conductive materials, due to their stochasticity, flexibility and possibility of large-scale production, seem promising for this task.
View Article and Find Full Text PDFExisting methods of neurorehabilitation include invasive or non-invasive stimulators that are usually simple digital generators with manually set parameters like pulse width, period, burst duration, and frequency of stimulation series. An obvious lack of adaptation capability of stimulators, as well as poor biocompatibility and high power consumption of prosthetic devices, highlights the need for medical usage of neuromorphic systems including memristive devices. The latter are electrical devices providing a wide range of complex synaptic functionality within a single element.
View Article and Find Full Text PDFMicromachines (Basel)
February 2023
In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices.
View Article and Find Full Text PDF