Radiation therapy for abdominopelvic malignancies often results in damage to the gastrointestinal tract (GIT) and permanent changes in bowel function. An overlooked component of the pathophysiology of radiation-induced bowel injury is the role of the gut microbiome. The goal of this research was to identify the impacts of acute radiation exposure on the GIT and gut microbiome.
View Article and Find Full Text PDFCandidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in species.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) remains a global health concern. Emerging clinical trial (CT) evidence suggests that probiotic intervention may promote a healthy gut microbiome in individuals with T2DM, thereby improving management of the disease. This systematic literature review summarizes thirty-three CTs investigating the use of oral probiotics for the management of T2DM.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
February 2023
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
November 2022
Phosphate (Pi) is essential for life as it is an integral part of the universal chemical energy adenosine triphosphate (ATP), and macromolecules such as, DNA, RNA proteins and lipids. Despite the core roles and the need of this nutrient in living cells, some bacteria can grow in environments that are poor in Pi. The metabolic mechanisms that enable bacteria to proliferate in a low phosphate environment are not fully understood.
View Article and Find Full Text PDF