α-Quartz (SiO) is one of the most widely used piezoelectric materials. However, the challenges associated with the control of the crystallization and the growth process limit its production to the hydrothermal growth of bulk crystals. GeO can also crystallize into the α-quartz phase, with a higher piezoelectric response and better thermal stability than SiO.
View Article and Find Full Text PDF[Formula: see text] with the [Formula: see text]-quartz structure is one of the most popular piezoelectrics. It is widely used in crystal oscillators, bulk acoustic wave (BAW) devices, surface acoustic wave (SAW) devices, and so on. [Formula: see text] can also be crystallized into the [Formula: see text]-quartz structure and it has better piezoelectric properties, with higher piezoelectric coefficient and electromechanical coupling coefficients, than [Formula: see text].
View Article and Find Full Text PDFTo obtain crystalline thin films of alpha-Quartz represents a challenge due to the tendency for the material towards spherulitic growth. Thus, understanding the mechanisms that give rise to spherulitic growth can help regulate the growth process. Here the spherulitic type of 2D crystal growth in thin amorphous Quartz films was analyzed by electron back-scatter diffraction (EBSD).
View Article and Find Full Text PDFNanomaterials (Basel)
June 2021
The growth of α-quartz-based piezoelectric thin films opens the door to higher-frequency electromechanical devices than those available through top-down approaches. We report on the growth of SiO2/GeO2 thin films by pulsed laser deposition and their subsequent crystallization. By introducing a devitrifying agent uniformly within the film, we are able to obtain the α-quartz phase in the form of platelets with lateral sizes above 100 μm at accessible temperatures.
View Article and Find Full Text PDFMetastable single crystals of nonstoichiometric PbTe are obtained by rapid cooling from the melt. The composition and crystallographic morphology are studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. Most single crystals have cubic, pyramidal, or hemispherical shapes with sizes ranging from 50 to 400 μm.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.