The development of drug resistance reduces the efficacy of cancer therapy. Tumor cells can acquire resistance to MDM2 inhibitors, which are currently under clinical evaluation. We generated RG7388-resistant neuroblastoma cells, which became more proliferative and metabolically active and were less sensitive to DNA-damaging agents in vitro and in vivo, compared with wild-type cells.
View Article and Find Full Text PDFCancer is unquestionably a global healthcare challenge, spurring the exporation of novel treatment approaches. In recent years, nanomaterials have garnered significant interest with the greatest hopes for targeted nanoformulations due to their cell-specific delivery, improved therapeutic efficacy, and reduced systemic toxicity for the organism. The problem of successful clinical translation of nanoparticles may be related to the fact that most in vitro tests are performed at pH values of normal cells and tissues, ranging from 7.
View Article and Find Full Text PDFNanoparticles based on poly(lactic-co-glycolic acid) (PLGA) with various surface chemistry are widely used in biomedicine for theranostic applications. The nature of the external coating of nanoparticles has a significant influence on their efficiency as drug carriers or visualization agents. However, information about the mechanisms of nanoparticle accumulation in tumors and the influence of their surface properties on biodistribution is scarce due to the lack of systematic evaluation.
View Article and Find Full Text PDFLapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond to it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes the lapatinib-mediated inhibition of growth of the human breast squamous carcinoma SK-BR-3 cell line.
View Article and Find Full Text PDFTargeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA-chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light.
View Article and Find Full Text PDF