Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR).
View Article and Find Full Text PDFSkin fibroblasts obtained from a 5-year-old girl with genetically proven (two heterozygous mutations in ARSB gene) and clinically manifested mucopolysaccharidosis type VI were successfully transformed into induced pluripotent stem cells by using Sendai virus-based reprogramming vectors including the four Yamanaka factors namely SOX2, OCT3/4, KLF4, and c-MYC. These iPSCs expressed pluripotency markers, had a normal karyotype and the potential to differentiate into three germ layers in spontaneous differentiation assay. The line may be used for cell differentiation and pharmacological investigations, and also may provide a model for development of a personalized treatment including drug screening and genome editing.
View Article and Find Full Text PDFWe generated two human induced pluripotency stem cell (hiPSC) lines, RCMGi011-A and 11-B, from skin fibroblast from patient with Mucopolysaccharidosis IV B type and autosomal recessive non-syndromic hearing loss 12 using non-integrating, viral CytoTune™-iPS 2.0 Sendai Reprogramming Kit. We verified variant c.
View Article and Find Full Text PDFSubstantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping.
View Article and Find Full Text PDFUrine cells obtained from a 14-year-old man with genetically proven (ACVR1: c.6176G > A) and clinically manifested fibrodysplasia ossificans progressiva were successfully transformed into induced pluripotent stem cells by using Sendai virus-based reprogramming vectors including the four Yamanaka factors such as OCT3/4, SOX2, KLF4, and c-MYC. These iPSCs expressed pluripotency markers, exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay and had a normal karyotype.
View Article and Find Full Text PDF