Juvenile salmon, with an initial weight of 9 g, were fed three experimental diets, formulated to replace 35 (SPC35), 58 (SPC58) and 80 (SPC80) of high quality fishmeal (FM) with soy protein concentrate (SPC) in quadruplicate tanks. Higher dietary SPC inclusion was combined with increased supplementation of methionine, lysine, threonine and phosphorus. The experiment was carried out for 177 days.
View Article and Find Full Text PDFBackground: The potential for alternative plant protein sources to replace limited marine ingredients in fish feeds is important for the future of the fish farming industry. However, plant ingredients in fish feeds contain antinutritional factors (ANFs) that can promote gut inflammation (enteritis) and compromise fish health. It is unknown whether enteritis induced by plant materials with notable differences in secondary metabolism is characterised by common or distinct gene expression patterns, and how using feeds with single vs mixed plant proteins may affect the gut transcriptome and fish performance.
View Article and Find Full Text PDFDiets with 50 (SPC50), 65 (SPC65) and 80 % (SPC80) substitution of prime fish meal (FM) with soy protein concentrate (SPC) were evaluated against a commercial type control feed with 35 % FM replacement with SPC. Increases in dietary SPC were combined with appropriate increases in methionine, lysine and threonine supplementation, whereas added phosphorus was constant among treatments. Diets were administered to quadruplicate groups of 29 g juvenile Atlantic salmon were exposed to constant light, for 97 days.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2015
The production of carnivorous fish such as Atlantic salmon (Salmo salar) is dependent on the availability of high quality proteins for feed formulations. For a number of nutritional, strategic and economic reasons, the use of plant proteins has steadily increased over the years, however a major limitation is associated with the presence of anti-nutritional factors and the nutritional profile of the protein concentrate. Investigating novel raw materials involves understanding the physiological consequences associated with the dietary inclusion of protein concentrates.
View Article and Find Full Text PDFMonitoring social interactions between individuals in large, high-density groups poses several challenges. Here we demonstrate that relative concentrations of serotonin (5-Hydroxytryptamine, 5-HT) and its principal catabolite 5-Hydroxyindoleacetic acid (5-HIAA) in brain tissue of individual fish reflect social organisation in large groups of farmed Atlantic salmon. In the central nervous system of vertebrates, the monoamine neurotransmitter/neuromodulator 5-HT is critical for maintaining adaptive physiological, cognitive and emotional processes.
View Article and Find Full Text PDF