Bone morphogenetic protein 2 (BMP-2) is an osteoinductive protein and a potent inducers of bone formation, playing an essential role during bone fracture repair. Heparan sulfate (HS), a highly charged and linear polysaccharide, is known to interact with and enhance BMP-2 bioactivity. Despite showing potential as a potent adjuvant of the endogenous bone healing response, commercially available HS is derived from animal sources which are less desirable when considering translation into the clinic.
View Article and Find Full Text PDFHeparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial.
View Article and Find Full Text PDFCommercial porcine intestinal mucosal heparan sulfate (HS) is a valuable material for research into its biological functions. As it is usually produced as a side-stream of pharmaceutical heparin manufacture, its chemical composition may vary from batch to batch. We analysed the composition and structure of nine batches of HS from the same manufacturer.
View Article and Find Full Text PDFThe multilineage differentiation potential of human mesenchymal stem cells (hMSCs) underpins their clinical utility for tissue regeneration. Control of such cell-fate decisions is tightly regulated by different growth factors/cytokines and their cognate receptors. Fibroblast growth factors (FGFs) are among such factors critical for osteogenesis.
View Article and Find Full Text PDFEur Cell Mater
August 2021
Periodontitis is the most common inflammatory disease that leads to periodontal defects and tooth loss. Regeneration of alveolar bone and soft tissue in periodontal defects is highly desirable but remains challenging. A heparan sulphate variant (HS3) with enhanced affinity for bone morphogenetic protein-2 (BMP2) that, when combined with collagen or ceramic biomaterials, enhances bone tissue regeneration in the axial and cranial skeleton in several animal models was reported previously.
View Article and Find Full Text PDF