Coupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T))-often considered the "gold standard" of main-group quantum chemistry-is inapplicable to three-dimensional metals due to an infrared divergence, preventing its application to many important problems in materials science. We study the full, nonperturbative inclusion of triple excitations (CCSDT) and propose a new, iterative method, which we call ring-CCSDT, that resums the essential triple excitations with the same N^{7} run-time scaling as CCSD(T). CCSDT and ring-CCSDT are used to calculate the correlation energy of the uniform electron gas at metallic densities and the structural properties of solid lithium.
View Article and Find Full Text PDFAn important concern related to the performance of Li-ion batteries is the formation of a solid electrolyte interphase on the surface of the anode. This film is formed from the decomposition of electrolytes and can have important effects on the stability and performance. Here, we evaluate the decomposition pathway of ethylene carbonate and related organic electrolyte molecules using a series of density functional approximations and correlated wave function (WF) methods, including the coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and auxiliary-field quantum Monte Carlo (AFQMC).
View Article and Find Full Text PDF