Efficient second harmonic generation and broad-band photoluminescence from deeply subwavelength and nontoxic nanoparticles is essential for nanophotonic applications. Here, we explore nonlinear optical response from mesoporous Si/SiO, SiO, and Si nanoparticles, considering various fabrication and treatment procedures. We show that thermal annealing (including femtosecond laser treatment) of mesoporous Si/SiO nanoparticles provides the transformation of Si phase from amorphous to crystalline, enhancing the second harmonic and nonlinear photoluminescent response.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Nanostructured ultraviolet (UV) light sources represent a growing research field in view of their potential applications in wearable optoelectronics or medical treatment devices. In this work, we report the demonstration of the first flexible UV-A light emitting diode (LED) based on AlGaN/GaN core-shell microwires. The device is based on a composite microwire/poly(dimethylsiloxane) (PDMS) membrane with flexible transparent electrodes.
View Article and Find Full Text PDFNonlinear silicon photonics has a high compatibility with CMOS technology and therefore is particularly attractive for various purposes and applications. Second harmonic generation (SHG) in silicon nanowires (NWs) is widely studied for its high sensitivity to structural changes, low-cost fabrication, and efficient tunability of photonic properties. In this study, we report a fabrication and SHG study of Si nanowire/siloxane flexible membranes.
View Article and Find Full Text PDFGallium nitride (GaN) is one of the most promising materials for high-frequency devices owing to its prominent material properties. We report on the fabrication and study of a series of Schottky diodes in the ground-signal-ground topology based on individual GaN nanowires. The electrical characterization of-curves demonstrated relatively high ideality factor value (about 6-9) in comparison to the planar Au/GaN diodes that can be attributed to the nanowire geometry.
View Article and Find Full Text PDFPolysiloxanes and materials based on them (silicone materials) are of great interest in optoelectronics due to their high flexibility, good film-forming ability, and optical transparency. According to the literature, polysiloxanes are suggested to be very promising in the field of optoelectronics and could be employed in the composition of liquid crystal devices, computer memory drives organic light emitting diodes (OLED), and organic photovoltaic devices, including dye synthesized solar cells (DSSC). Polysiloxanes are also a promising material for novel optoectronic devices, such as LEDs based on arrays of III-V nanowires (NWs).
View Article and Find Full Text PDF