In the last decade, the Comet assay has been used increasingly in studies of workers potentially exposed to genotoxic substances in the workplace or environment. Significant increases in DNA damage measured with the Comet assay has been reported in lymphocytes of agricultural workers; however, less intrusive means of biomonitoring are needed in epidemiological investigations. This study was designed to use the Comet assay to describe the association of markers of DNA damage in oral leukocytes with biomarkers of pesticide exposure in 134 farmworkers working in berry crops in Oregon compared to control populations.
View Article and Find Full Text PDFBackground: Genetic variation in xenobiotic metabolizing enzymes may explain differing susceptibilities to the cancer causing effects of tobacco and alcohol.
Methods: We compared 203 oral squamous cell carcinoma cases and 416 controls for single nucleotide polymorphisms (SNPs) in 8 genes (CYP1A1, CYP2E1, MPO, mEH, GSTM1, GSTT1, GSTP1, and NAT2). Except for NAT2, genotype frequencies were similar in the 2 groups.
Toxicol Appl Pharmacol
February 2008
Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG).
View Article and Find Full Text PDFPolymorphisms in genes that encode for metabolic enzymes have been associated with variations in enzyme activity between individuals. Such variations could be associated with differences in individual exposure to carcinogens that are metabolized by these genes. In this study, we examine the association between polymorphisms in several metabolic genes and the consumption of tobacco in a large sample of healthy individuals.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
June 2003
Glutathione S-transferase (GST) enzymes detoxify therapeutic drugs and reactive oxidants, so GST polymorphisms may influence survival after diagnosis of cancer. We evaluated survival according to GST polymorphisms in a population-based series of lung cancer patients. The study subjects (n = 274) were men diagnosed with lung cancer from 1993 through 1996 who participated in a case control study and provided a blood sample for genotyping.
View Article and Find Full Text PDF