Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.
View Article and Find Full Text PDFWesselsbron virus (WSLV) is a zoonotic, mosquito-borne orthoflavivirus endemic to sub-Saharan Africa, causing abortions and stillbirths in small ruminants. The life cycle of WSLV involves Aedes mosquitoes and various wildlife and domestic animals. Seminal studies in the 1950s have shown the zoonotic potential of WSLV, notably in accidental infections of laboratory workers exposed to infected material.
View Article and Find Full Text PDFIntroduction: Quantifying antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neutralising antibodies may help to understand protection at the individual and population levels. Determination of neutralising antibodies using classical virus neutralisation tests (VNT) is considered the gold standard, but they are costly and time-intensive. Enzyme-linked immunosorbent assay (ELISA)-based surrogate VNTs (sVNT) or anti-SARS-CoV-2 spike protein receptor binding domain immunoglobulins (anti-S-RBD Ig) may be suitable alternatives to VNTs.
View Article and Find Full Text PDF