Mechanisms of adaptive rearrangements of the fibrous extracellular matrix of connective tissues under microgravity practically remain unexplored, despite the most essential functions of the stroma existing to ensure the physiological activity of internal organs. Here we analyzed the biomaterial (the skin dermis) of C57BL/6J mice from the Rodent Research-4 experiment after a long stay in space flight. The biomaterial was fixed onboard the International Space Station.
View Article and Find Full Text PDFThis study provides a combined histochemical method for detecting enzyme activity of chloroacetate esterase simultaneously with immunolabeling of the components of a specific tissue microenvironment on formalin-fixed, paraffin-embedded specimens. Chromogenic detection of the molecular targets within and outside the mast cells provides novel options in determining the histoarchitectonics of organ-specific mast cell populations, studying the functional significance of chloroacetate esterase and specifying the immune landscape of the tissue microenvironment.
View Article and Find Full Text PDFPlasma levels of meprin A, IL-6, and IL-18 were measured in 68 patients with acute decompensated heart failure at the time of admission to the hospital and after 1 year. The patients were assigned to groups depending on renal function disorder which was assessed by glomerular filtration rate (GFR). During hospital stay, the plasma levels of meprin A in patients with normal GFR (≥90 ml/min/1.
View Article and Find Full Text PDFMast cells (MCs) produce a variety of mediators, including proteases-tryptase, chymase, and carboxypeptidases-which are important for the immune response. However, a detailed assessment of the mechanisms of biogenesis and excretion of proteases in melanoma has yet to be carried out. In this study, we present data on phenotype and secretory pathways of proteases in MCs in the course of melanoma.
View Article and Find Full Text PDFBull Exp Biol Med
February 2022
We studied the effects of direct intratracheal and indirect intravenous administration of pathogen on the concentrations of types I, III, and IV collagens and fibronectin and expression of the corresponding genes at the early stages of LPS-induced lung injury. Direct and indirect administration of LPS increased the level of type III collagen and decreased the expression of genes encoding types I and III collagens. Expression of type IV collagen remained unchanged.
View Article and Find Full Text PDF