Certain environmental chemicals affect the body's energy balance and are known as metabolism disrupting chemicals (MDCs). MDCs have been implicated in the development of metabolic diseases, such as obesity and type 2 diabetes. In contrast to their well-known impact on developing adipocytes, MDC effects leading to altered energy balance and development of insulin resistance in mature white adipocytes, constituents of adult adipose tissue, are largely unclear.
View Article and Find Full Text PDFAdipose tissue (AT) is a key metabolic organ which functions are rhythmically regulated by an endogenous circadian clock. Feeding is a "zeitgeber" aligning the clock in AT with the external time, but mechanisms of this regulation remain largely unclear. We tested the hypothesis that postprandial changes of the hormone insulin directly entrain circadian clocks in AT and investigated a transcriptional-dependent mechanism of this regulation.
View Article and Find Full Text PDFMany marketed pharmaceuticals reach extremely high tissue concentrations due to accumulation in lysosomes (lysosomotropism). Quantitative prediction of intracellular concentrations of accumulating drugs is challenging, especially for macrocyclic compounds that mainly do not fit in current in silico models. We tested a unique library of 47 compounds (containing 39 macrocycles) specifically designed to cover the entire range of accumulation intensities observed with pharmaceuticals so far.
View Article and Find Full Text PDFSome cationic amphiphilic drugs (CADs) have been individually reported to interfere with the differentiation of immune system cells, such as macrophages and dendritic cells. To investigate the possible generic nature of this process, in this study we aimed to see whether these drugs are capable of interfering with the differentiation of adipocytes. Further, we investigated whether this feature might be connected to the lysosomotropic character of these drugs, and their disturbance of intracellular membrane trafficking rather than to the individual pharmacologic properties of each drug.
View Article and Find Full Text PDFMany chemicals accumulate in organisms through a variety of different mechanisms. Cationic amphiphilic drugs (CADs) accumulate in lysosomes and bind to membranes causing phospholipidosis, whereas many lipophilic chemicals target adipose tissue. Perfluoroalkyl substances (PFASs) are widely used as surfactants, but many of them are highly bioaccumulating and persistent in the environment, making them notorious environmental toxicants.
View Article and Find Full Text PDF