Synthetic data generation in omics mimics real-world biological data, providing alternatives for training and evaluation of genomic analysis tools, controlling differential expression, and exploring data architecture. We previously developed Precious1GPT, a multimodal transformer trained on transcriptomic and methylation data, along with metadata, for predicting biological age and identifying dual-purpose therapeutic targets potentially implicated in aging and age-associated diseases. In this study, we introduce Precious2GPT, a multimodal architecture that integrates Conditional Diffusion (CDiffusion) and decoder-only Multi-omics Pretrained Transformer (MoPT) models trained on gene expression and DNA methylation data.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach.
View Article and Find Full Text PDFPandaOmics is a cloud-based software platform that applies artificial intelligence and bioinformatics techniques to multimodal omics and biomedical text data for therapeutic target and biomarker discovery. PandaOmics generates novel and repurposed therapeutic target and biomarker hypotheses with the desired properties and is available through licensing or collaboration. Targets and biomarkers generated by the platform were previously validated in both and studies.
View Article and Find Full Text PDFTarget discovery is crucial for the development of innovative therapeutics and diagnostics. However, current approaches often face limitations in efficiency, specificity, and scalability, necessitating the exploration of novel strategies for identifying and validating disease-relevant targets. Advances in natural language processing have provided new avenues for predicting potential therapeutic targets for various diseases.
View Article and Find Full Text PDFAging (Albany NY)
June 2023
Aging is a complex and multifactorial process that increases the risk of various age-related diseases and there are many aging clocks that can accurately predict chronological age, mortality, and health status. These clocks are disconnected and are rarely fit for therapeutic target discovery. In this study, we propose a novel approach to multimodal aging clock we call Precious1GPT utilizing methylation and transcriptomic data for interpretable age prediction and target discovery developed using a transformer-based model and transfer learning for case-control classification.
View Article and Find Full Text PDF