Food Addit Contam Part A Chem Anal Control Expo Risk Assess
June 2024
Maize is an important crop for the Republic of Moldova and one of the crops most contaminated with mycotoxins. Maize grain obtained from plants cultivated on Moldavian cornfields in 2021 and 2022 were tested for mycotoxigenic risk using qPCR with primers to several fungal genome sequences engaged in mycotoxin synthesis and ELISA test to screen total aflatoxins, fumonisin B1, zearalenone, deoxynivalenol and T-2 toxin. Except for T-2 toxin, the mycotoxin concentrations were under the limits of detection and did not exceed maximum admissible levels for unprocessed grain.
View Article and Find Full Text PDFWith the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity.
View Article and Find Full Text PDFWe propose the terahertz (THz) detectors based on field-effect transistors (FETs) with the graphene channel (GC) and the black-Arsenic (b-As) black-Phosphorus (b-P), or black-Arsenic-Phosphorus (b-As[Formula: see text]P[Formula: see text]) gate barrier layer. The operation of the GC-FET detectors is associated with the carrier heating in the GC by the THz electric field resonantly excited by incoming radiation leading to an increase in the rectified current between the channel and the gate over the b-As[Formula: see text]P[Formula: see text] energy barrier layer (BLs). The specific feature of the GC-FETs under consideration is relatively low energy BLs and the possibility to optimize the device characteristics by choosing the barriers containing a necessary number of the b-As[Formula: see text]P[Formula: see text] atomic layers and a proper gate voltage.
View Article and Find Full Text PDFThis paper reviews recent advances in the research and development of graphene-based plasmonic metamaterials for terahertz (THz) laser transistors. The authors' theoretical discovery on THz laser transistors in 2007 was realized as a distributed-feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) in 2018, demonstrating ∼0.1 µW single-mode emission at 5.
View Article and Find Full Text PDFWe propose the far-infrared and terahertz emitting diodes (FIR-EDs and THz-EDs) based on the graphene-layer/black phosphorus (GL/b-P) and graphene-layer/MoS (GL/MoS) heterostructures with the lateral hole and vertical electron injection and develop their device models. In these EDs, the GL serves as an active region emitting the FIR and THz photons. Depending on the material of the electron injector, the carriers in the GL can be either cooled or heated dictated by the interplay of the vertical electron injection and optical phonon recombination.
View Article and Find Full Text PDF