Publications by authors named "V N Lepalovskij"

Magnetometry and ferromagnetic resonance are used to quantitatively study magnetic anisotropy with an easy axis both in the film plane and perpendicular to it. In the study of single-layer and multilayer permalloy films, it is demonstrated that these methods make it possible not only to investigate the average field of perpendicular and in-plane anisotropy, but also to characterize their inhomogeneity. It is shown that the quantitative data from direct integral and local measurements of magnetic anisotropy are consistent with the direct and indirect estimates based on processing of the magnetization curves.

View Article and Find Full Text PDF

Magnetization reversal processes in the NiFe/FeMn exchange biased structures with various antiferromagnetic layer thicknesses (0-50 nm) and glass substrate temperatures (17-600 °C) during deposition were investigated in detail. Magnetic measurements were performed in the temperature range from 80 K up to 300 K. Hysteresis loop asymmetry was found at temperatures lower than 150 K for the samples with an antiferromagnetic layer thickness of more than 10 nm.

View Article and Find Full Text PDF

Multilayered [FeNi (100 nm)/Cu (3 nm)]/Cu (500 nm)/[Cu (3 nm)/[FeNi (100 nm)] structures were used as sensitive elements of the magnetoimpedance (MI) sensor prototype for model experiments of the detection of magnetic particles in blood vessel. Non-ferromagnetic cylindrical polymer rod with a small magnetic inclusion was used as a sample mimicking thrombus in a blood vessel. The polymer rod was made of epoxy resin with an inclusion of an epoxy composite containing 30% weight fraction of commercial magnetite microparticles.

View Article and Find Full Text PDF

A growing variety of microelectronic devices and magnetic field sensors as well as a trend of miniaturization demands the development of low-dimensional magnetic materials and nanostructures. Among them, soft magnetic thin films of Finemet alloys are appropriate materials for sensor and actuator devices. Therefore, one of the important directions of the research is the optimization of thin film magnetic properties.

View Article and Find Full Text PDF

In-tissue embedded magnetic nanoparticle (MNPs) detection is one of the most interesting cases for cancer research. In order to understand the origin, the limits and the way of improvement of magnetic biosensor sensitivity for the detection of 3D mezoscopic distributions of MNPs, we have developed a magnetoimpedance biosensor prototype with a [Cu (3 nm)/FeNi(100 nm)]/Cu(500 nm)/[FeNi(100 nm)/Cu(3 nm)] rectangular sensitive element. Magnetoimpedance (MI) responses were measured with and without polyacrylamide ferrogel layer mimicking natural tissue in order to evaluate stray fields of embedded MNPs of γ-FeO iron oxide.

View Article and Find Full Text PDF