Publications by authors named "V N Gur'ev"

In experiments on Wistar rats, a simulated defect in the flat bones of the skull was filled with a collagen sponge of animal origin impregnated with BMP-2 or pure sponge; in control rats, the defect was left open. During follow-up, X-ray density of the collagen sponge in the experimental groups differed significantly. The results attest to the absence of spontaneous remodeling of the bone tissue under conditions modeled focal defect.

View Article and Find Full Text PDF

The composite material based on reinforcement of polyamide filaments enclosed by a nonwoven matrix of nanoscaled bioresorbable poly(3-hydroxybutyrate) fibers was developed for application as an artificial ligament implant. The aim of this study was to investigate biodegradability and biocompatibility of the developed implant, as well as its stress-strain properties. The study results show the polyamide core of the implant has stress-strain properties comparable with a natural ligament.

View Article and Find Full Text PDF

The objective of the present study was to analyse results of the treatment of 267 patients with pseudoarthrosis of the extremities and to use them for the development of criteria for the choice of methods for rehabilitative therapy. It was shown that stability of fixation of bone fragments by metal devices in patients with false joints (unlike fractures) varies depending on bone tissue condition. With this in mind, the patients receiving rehabilitative treatment were allocated to three groups differing in the degree of immobilization in the postoperative period.

View Article and Find Full Text PDF

In an earlier study, we experimentally mimicked the effects of mechanical interaction between different regions of the ventricular wall by allowing pairs of independently maintained cardiac muscle fibers to interact mechanically in series or in parallel. This simple physiological model of heterogeneous myocardium, which has been termed "duplex," has provided new insight into basic effects of cardiac electromechanical heterogeneity. Here, we present a novel "hybrid duplex," where one of the elements is an isolated cardiac muscle and the other a "virtual cardiac muscle.

View Article and Find Full Text PDF

Herein we discuss modem data showing that ventricle's working myocardium is highly heterogeneous. Significant transmural differences in electrophysiological and biomechanical properties of cardiomyocytes are reviewed. The reviewed evidence of myocardial heterogeneity constitutes the basis for modem assessment of segmental kinetics of different regions in intact heart.

View Article and Find Full Text PDF