Publications by authors named "V N Dubrovskii"

We study the current-controlled lasing switching from the ground state (GS) to the excited state (ES) transition in broad-area (stripe width 100 µm) InGaAs/GaAs quantum well-dot (QWD) and quantum well (QW) lasers. In the lasers with one QWD layer and a 0.45 µm-thick GaAs waveguide, pure GS lasing takes place up to an injection current as high as 8 A (40 kA/cm).

View Article and Find Full Text PDF

Increasing the InN content in the InGaN compound is paramount for optoelectronic applications. It has been demonstrated in homogeneous nanowires or deliberately grown nanowire heterostructures. Here, we present spontaneous core-shell InGaN nanowires grown by molecular beam epitaxy on Si substrates at 625 °C.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how intramuscular injections of two drugs, physostigmine and neostigmine, affect Na,K-ATPase activity in rat red blood cells after intense exercise.
  • Both drugs help reduce stress responses by lowering indicators such as adrenal ascorbic acid, stress-related red blood cell increases, and lipid peroxidation (LPO) markers.
  • The drugs appear to restore Na,K-ATPase activity affected by stress and can correct the functions of cholinergic systems in the body’s stress response mechanisms.
View Article and Find Full Text PDF

The growth kinetics of vertical III-V nanowires (NWs) were clarified long ago. The increasing aspect ratio of NWs results in an increase in the surface area, which, in turn, enhances the material collection. The group III adatom diffusion from the NW sidewalls to the top sustains a superlinear growth regime.

View Article and Find Full Text PDF

Compositional control over vapor-liquid-solid III-V ternary nanowires based on group V intermix (VLS IIIVV NWs) is complicated by the presence of a catalyst droplet with extremely low and hence undetectable concentrations of group V atoms. The liquid-solid and vapor-solid distributions of IIIVV NWs at a given temperature are influenced by the kinetic parameters (supersaturation and diffusion coefficients in liquid, V/III flux ratio in vapor), temperature and thermodynamic constants. We analyze the interplay of the kinetic and thermodynamic factors influencing the compositions of VLS IIIVV NWs and derive a new vapor-solid distribution that contains only one parameter of liquid, the ratio of the diffusion coefficients of dissimilar group V atoms.

View Article and Find Full Text PDF