Publications by authors named "V N Demidov"

Post-translational cycles of α-tubulin detyrosination and tyrosination generate microtubule diversity, the cellular functions of which remain largely unknown. Here we show that α-tubulin detyrosination regulates kinetochore-microtubule attachments to ensure normal chromosome oscillations and timely anaphase onset during mitosis. Remarkably, detyrosinated α-tubulin levels near kinetochore microtubule plus-ends depend on the direction of chromosome motion during metaphase.

View Article and Find Full Text PDF

Recently, we have described the first supermolecular nanoentities of vitamin B derivative, viz. monocyano form of heptabutyl cobyrinate, unique nanoparticles with strong noncovalent intermolecular interactions, emerging optical and catalytic properties. Their nearest analogue, heptamethyl cobyrinate (ACCby), exhibits bioactivity.

View Article and Find Full Text PDF
Article Synopsis
  • The field of magnonics focuses on utilizing collective spin excitations in magnetically ordered materials to innovate information technologies, sensing applications, and advanced computing.
  • Spin waves (or magnons) allow for high-frequency data processing without the energy loss associated with moving electric charges, promising efficient alternatives to conventional processors.
  • The 2024 Magnonics Roadmap outlines recent progress, future challenges, and growing interest in hybrid structures, emphasizing the potential for energy-efficient technologies as demand for machine learning and AI continues to rise.
View Article and Find Full Text PDF

Generation of second-harmonic waves is one of the universal nonlinear phenomena that have found numerous technical applications in many modern technologies, in particular, in photonics. This phenomenon also has great potential in the field of magnonics, which considers the use of spin waves in magnetic nanostructures to implement wave-based signal processing and computing. However, due to the strong frequency dependence of the phase velocity of spin waves, resonant phase-matched generation of second-harmonic spin waves has not yet been achieved in practice.

View Article and Find Full Text PDF

Magnonic nano-devices exploit magnons - quanta of spin waves - to transmit and process information within a single integrated platform that has the potential to outperform traditional semiconductor-based electronics. The main missing cornerstone of this information nanotechnology is an efficient scheme for the amplification of propagating spin waves. The recent discovery of spin-orbit torque provided an elegant mechanism for propagation losses compensation.

View Article and Find Full Text PDF