Publications by authors named "V N Bliznyuk"

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system.

View Article and Find Full Text PDF

A scoping study of a commercially available resin selective for aqueous plutonium (Pu), AnaLig® Pu-02, modified with scintillator was investigated as a scheme to simultaneously concentrate and detect Pu in aquatic matrices. The extractive scintillating resin was comprised of a silica base, functionalized for plutonium extraction, grafted with plastic scintillator of polyvinyl toluene (PVT) and 2-(1-naphthyl)-4-vinyl-5- phenyloxazole (vNPO) fluor. Scintillator was incorporated onto the AnaLig® Pu-02 resin in a two-step process of silanization followed by surface-polymerization.

View Article and Find Full Text PDF

We explored two approaches to recover uranium and plutonium from aqueous solutions at pH 4 and pH 7 using water-soluble star-like polyacrylamide polymers with a dextran core. In the first approach, a solution comprising a neutral or ionomer polymer was mixed with a radionuclide solution to form polymer-metal complexes that were then retained by ultrafiltration (UF) membranes under applied pressure. The same polymers were first deposited on the membrane in the second approach using pressure-driven flow.

View Article and Find Full Text PDF

A hybrid extractive scintillating resin (HESR) was developed for the concentration and detection of radiocesium. The HESR comprised a cesium-selective potassium ferrierite ion-exchange powder embedded in porous polymeric scintillating beads. It was prepared by carrying out suspension polymerization of 4-methylstyrene with divinylbenzene, 2-(1-naphthyl)-4-vinyl-5-phenyloxazole fluor and ferrierite-K powder.

View Article and Find Full Text PDF

Sorption properties of polydopamine (PDA) for uranium and plutonium from an aqueous environment are reported at three different pH values (2, 4 and 6.5-7). In addition to deionized (DI) water, artificial groundwater (GW) and seawater (SW) were used with U uptake close to 100% in each case.

View Article and Find Full Text PDF