Regioselective oxidation of glyceryl alkyl ethers is of utmost importance for the fabrication of substituted hydroxy ketones and enantiopure 1,2-diols as green solvents and pharmaceutical building blocks, respectively. An engineered glycerol dehydrogenase from Bacillus stearothermophilus was described to perform the regioselective oxidation of alkyl glycerol ethers, identifying position 252 as key for accepting larger substrates than glycerol. In this work, we further engineer that position through partial saturation mutagenesis to broaden the substrate scope toward other glycerol derivatives, improving enzyme kinetics and minimizing product inhibition.
View Article and Find Full Text PDFThe origin of the enzyme's powerful role in accelerating chemical reactions is one of the most critical and still widely discussed questions. It is already accepted that enzymes impose an electrostatic field onto their substrates by adopting complex three-dimensional structures; therefore, the preorganization of electric fields inside protein active sites has been proposed as a crucial contributor to catalytic mechanisms and rate constant enhancement. In this work, we focus on three catalytically active β-subunits of 20S proteasomes with low sequence identity (∼30%) whose active sites, although situated in an electrostatically miscellaneous environment, catalyze the same chemical reaction with similar catalytic efficiency.
View Article and Find Full Text PDFFaraday Discuss
September 2024
The effective management of plastic waste has become a global imperative, given our reliance on a linear model in which plastics are manufactured, used once, and then discarded. This has led to the pervasive accumulation of plastic debris in landfills and environmental contamination. Recognizing this issue, numerous initiatives are underway to address the environmental repercussions associated with plastic disposal.
View Article and Find Full Text PDF