Medical implants have improved the quality of life of many patients. However, surgical intervention may eventually lead to implant microbial contamination. The aims of this research were to develop an easy, robust, quantitative assay to assess surface antimicrobial activities, especially the anti-nascent biofilm activity, and to identify control surfaces, allowing for international comparisons.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
April 2023
This study presents a new two compartmental model with, recently defined General fractional derivative. We review that concept of General fractional derivative and use the kernel function that generalizes the classical Caputo derivative in a mathematically consistent way. Next we use this model to study the release of antibiotic gentamicin in poly (vinyl alcohol)/gentamicin(PVA/Gent) hydrogel aimed for wound dressing in medical treatment of deep chronical wounds.
View Article and Find Full Text PDFBiocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] , with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade.
View Article and Find Full Text PDFCurrent trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients' bone tissue.
View Article and Find Full Text PDFThe electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone.
View Article and Find Full Text PDF