New data for the reflectivity of shock-compressed xenon plasmas at pressures of 10-12 GPa at large incident angles are presented. In addition, measurements have been performed at different densities. These data allow to analyze the free-electron density profile across the shock wave front.
View Article and Find Full Text PDFRecently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5-4.
View Article and Find Full Text PDFString theory methods led to the hypothesis that the ratio of a shear viscosity coefficient to the volume density of entropy of any physical system has a lower bound. Systems with strong coupling have a small viscosity as compared to weakly coupled plasmas in which the viscosity is proportional to the mean free path. Here, we have estimated the fully ionized strongly coupled plasma viscosity based on the dynamic experimental data on electrical conductivity and have shown that the ratio of viscosity to entropy of the strongly coupled plasma is very close to that of the lower bound predicted by the string theory.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2007
Theoretical results for the electrical conductivity of noble gas plasmas are presented in comparison with experiment. The composition is determined within a partially ionized plasma model. The conductivity is then calculated using linear response theory, in which the relevant scattering mechanisms of electrons from ions, electrons, and neutral species are taken into account.
View Article and Find Full Text PDFThe subject of high-energy-density (HED) states in matter is of considerable importance to numerous branches of basic as well as applied physics. Intense heavy-ion beams are an excellent tool to create large samples of HED matter in the laboratory with fairly uniform physical conditions. Gesellschaft für Schwerionenforschung, Darmstadt, is a unique worldwide laboratory that has a heavy-ion synchrotron, SIS18, that delivers intense beams of energetic heavy ions.
View Article and Find Full Text PDF