The widespread use of high-capacity Ni-rich layered oxides such as LiNiMnCoO (NMC811), in lithium-ion batteries is hindered due to practical capacity loss and reduced working voltage during operation. Aging leads to defective NMC811 particles, affecting electrochemical performance. Surface modification offers a promising approach to improve cycle life.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
The development of LiNiMnCoO (NMC811) as a cathode material for high-energy-density lithium-ion batteries (LIBs) intends to address the driving limitations of electric vehicles. However, the commercialization of this technology has been hindered by poor cycling stability at high cutoff voltages. The potential instability and drastic capacity fade stem from irreversible parasitic side reactions at the electrode-electrolyte interface.
View Article and Find Full Text PDFAn ambient pressure cell is described for conducting synchrotron-based x-ray photoelectron spectroscopy (XPS) measurements during atomic layer deposition (ALD) processes. The instrument is capable of true in situ and operando experiments in which it is possible to directly obtain elemental and chemical information from the sample surface using XPS as the deposition process is ongoing. The setup is based on the ambient pressure XPS technique, in which sample environments with high pressure (several mbar) can be created without compromising the ultrahigh vacuum requirements needed for the operation of the spectrometer and the synchrotron beamline.
View Article and Find Full Text PDFNickel-rich layered oxides, such as LiNiCoMnO (NMC622), are high-capacity electrode materials for lithium-ion batteries. However, this material faces issues, such as poor durability at high cut-off voltages (>4.4 V vs Li/Li), which mainly originate from an unstable electrode-electrolyte interface.
View Article and Find Full Text PDFAn experimental approach is described in which well-defined perturbations of the gas feed into an Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS) cell are fully synchronized with the time-resolved x-ray photoelectron spectroscopy data acquisition. These experiments unlock new possibilities for investigating the properties of materials and chemical reactions mediated by their surfaces, such as those in heterogeneous catalysis, surface science, and coating/deposition applications. Implementation of this approach, which is termed perturbation-enhanced APXPS, at the SPECIES beamline of MAX IV Laboratory is discussed along with several experimental examples including individual pulses of N gas over a Au foil, a multi-pulse titration of oxygen vacancies in a pre-reduced TiO single crystal with O gas, and a sequence of alternating precursor pulses for atomic layer deposition of TiO on a silicon wafer substrate.
View Article and Find Full Text PDF