Publications by authors named "V Mierzejewski"

All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments.

View Article and Find Full Text PDF

While Earth contains the only known example of life in the universe, it is possible that life elsewhere is fundamentally different from what we are familiar with. There is an increased recognition in the astrobiology community that the search for life should steer away from terran-specific biosignatures to those that are more inclusive to all life-forms. To start exploring the space of possibilities that life could occupy, we can try to dissociate life from the chemistry that composes it on Earth by envisioning how different life elsewhere could be in composition, lifestyle, medium, and form, and by exploring how the general principles that govern living systems on Earth might be found in different forms and environments across the Solar System.

View Article and Find Full Text PDF

The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology.

View Article and Find Full Text PDF

Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions.

View Article and Find Full Text PDF

All life on Earth is unified by its use of a shared set of component chemical compounds and reactions, providing a detailed model for universal biochemistry. However, this notion of universality is specific to known biochemistry and does not allow quantitative predictions about examples not yet observed. Here, we introduce a more generalizable concept of biochemical universality that is more akin to the kind of universality found in physics.

View Article and Find Full Text PDF