We report on a study of the radiative decay of fission fragments populated via neutronless fission of ^{252}Cf(sf). Applying the double-energy method a perfect mass identification is achieved for these rare events. In the specific case of the ^{120}Cd/^{132}Sn cold fragmentation, we find that ^{132}Sn is produced in its ground state.
View Article and Find Full Text PDFReliable neutron-induced-reaction cross sections of unstable nuclei are essential for nuclear astrophysics and applications but their direct measurement is often impossible. The surrogate-reaction method is one of the most promising alternatives to access these cross sections. In this work, we successfully applied the surrogate-reaction method to infer for the first time both the neutron-induced fission and radiative capture cross sections of ^{239}Pu in a consistent manner from a single measurement.
View Article and Find Full Text PDFThe decay of (19)O(β(-)) and (19)Ne(β(+)) implanted in niobium in its superconducting and metallic phases was measured using purified radioactive beams produced by the SPIRAL GANIL facility. Half-lives and branching ratios measured in the two phases are consistent within a 1σ error bar. This measurement casts strong doubts on the predicted strong electron screening in a superconductor, the so-called superscreening.
View Article and Find Full Text PDFWe report on the g-factor measurement of the first isomeric state in (16)43S27 [Ex=320.5(5) keV, T1/2=415(5) ns, and g=0.317(4)].
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2008
Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion.
View Article and Find Full Text PDF