Publications by authors named "V Mastronardi"

Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index (CAVI) has significant clinical importance for the early diagnosis of cardiovascular diseases (CVDs). Standard approaches, including echocardiography, impedance cardiography, or hemodynamic monitoring, are hindered by expensive and bulky apparatus and accessibility only in specialized facilities. Moreover, noninvasive techniques like sphygmomanometry, electrocardiography, and arterial tonometry often lack accuracy due to external electrical interferences, artifacts produced by unreliable electrode contacts, misreading from placement errors, or failure in detecting transient issues and trends.

View Article and Find Full Text PDF

Two-dimensional (2D) conjugated metal-organic frameworks (c-MOFs) are promising materials for supercapacitor (SC) electrodes due to their high electrochemically accessible surface area coupled with superior electrical conductivity compared to traditional MOFs. In this work, porous and non-porous HHB-Cu (HHB=hexahydroxybenzene), derived through surfactant-assisted synthesis are studied as representative 2D c-MOF models with different characteristics, showing diverse reversible redox reactions with Na and Li in aqueous (10 M NaNO) and organic (1.0 M LiPF in ethylene carbonate and dimethyl carbonate) electrolytes, respectively.

View Article and Find Full Text PDF

The capacitance of electrode materials used in electrochemical double-layer capacitors (EDLCs) is currently limited by several factors, including inaccessible isolated micropores in high-surface area carbons, the finite density of states resulting in a quantum capacitance in series to Helmholtz double-layer capacitance, and the presence of surface impurities, such as functional groups and adsorbed species. To unlock the full potential of EDLC active materials and corresponding electrodes, several post-production treatments are commonly proposed to improve their capacitance and, thus, the energy density of the corresponding devices. In this work, we report a systematic study of the effect of a prototypical treatment, namely H-assisted thermal treatment, on the chemical, structural, and thermal properties of activated carbon and corresponding electrodes.

View Article and Find Full Text PDF

Designing robust and cost-effective electrocatalysts for efficient alkaline oxygen evolution reaction (OER) is of great significance in the field of water electrolysis. In this study, an electrochemical strategy to activate stainless steel (SS) electrodes for efficient OER is introduced. By cycling the SS electrode within a potential window that encompasses the Fe(II)↔Fe(III) process, its OER activity can be enhanced to a great extent compared to using a potential window that excludes this redox reaction, decreasing the overpotential at current density of 100 mA cm by 40 mV.

View Article and Find Full Text PDF

Degeneration of photoreceptors in age-related macular degeneration (AMD) is associated with oxidative stress due to the intense aerobic metabolism of rods and cones that if not properly counterbalanced by endogenous antioxidant mechanisms can precipitate photoreceptor degeneration. In spite of being a priority eye disease for its high incidence in the elderly, no effective treatments for AMD exist. While systemic administration of antioxidants has been unsuccessful in slowing down degeneration, locally administered rare-earth nanoparticles were shown to be effective in preventing retinal photo-oxidative damage.

View Article and Find Full Text PDF