Publications by authors named "V Martinez-Merino"

Molybdenum carbide supported on activated carbon (β-MoC/AC) has been tested as catalyst in the reductive catalytic fractionation (RCF) of lignocellulosic biomass both in batch and in Flow-Through (FT) reaction systems. High phenolic monomer yields (34 wt.%) and selectivity to monomers with reduced side alkyl chains (up to 80 wt.

View Article and Find Full Text PDF

Nitric oxide (NO) is an essential reactive oxygen species and a signal molecule in plants. Although several studies have proposed the occurrence of oxidative NO production, only reductive routes for NO production, such as the nitrate (NO-3) -upper-reductase pathway, have been evidenced to date in land plants. However, plants grown axenically with ammonium as the sole source of nitrogen exhibit contents of nitrite and NO, evidencing the existence of a metabolic pathway for oxidative production of NO.

View Article and Find Full Text PDF

The ornithine-urea cycle (urea cycle) makes a significant contribution to the metabolic responses of lower photosynthetic eukaryotes to episodes of high nitrogen availability. In this study, we compared the role of the plant urea cycle and its relationships to polyamine metabolism in ammonium-fed and nitrate-fed Medicago truncatula plants. High ammonium resulted in the accumulation of ammonium and pathway intermediates, particularly glutamine, arginine, ornithine, and putrescine.

View Article and Find Full Text PDF

Lignocellulosic residues have the potential for obtaining high value-added products that could be better valorized if biorefinery strategies are adopted. The debarking of short-rotation crops yields important amounts of residues that are currently underexploited as low-grade fuel and could be a renewable source of phenolic compounds and other important phytochemicals. The isolation of these compounds can be carried out by different methods, but for attaining an integral valorization of barks, a preliminary extraction step for phytochemicals should be included.

View Article and Find Full Text PDF

Lignocellulosic materials are promising alternatives to non-renewable fossil sources when producing aromatic compounds. Lignins from . and from industrial wastes and biorefinery effluents were isolated and characterized.

View Article and Find Full Text PDF