Publications by authors named "V Manaves"

Inhibition of the receptor tyrosine kinase MerTK by small molecules has the potential to augment the immune response to tumors. Potent, selective inhibitors with high levels of target engagement are needed to fully evaluate the potential use of MerTK inhibitors as cancer therapeutics. We report the discovery and optimization of a series of pyrazinamide-based type 1.

View Article and Find Full Text PDF

TAM receptor tyrosine kinases have emerged as promising therapeutic targets for cancer treatment due to their roles in both tumor intrinsic survival mechanisms and suppression of antitumor immunity within the tumor microenvironment. Inhibiting MerTK and Axl selectively is believed to hinder cancer cell survival, reverse the protumor myeloid phenotype, and suppress efferocytosis, thereby eliciting an antitumor immune response. In this study, we present the discovery of , a highly potent and selective dual MerTK/Axl inhibitor, achieved through a structure-based medicinal chemistry campaign.

View Article and Find Full Text PDF

Compounds that inhibit glutathione peroxidase 4 (GPX4) hold promise as cancer therapeutics in their ability to induce a form of nonapoptotic cell death called ferroptosis. Our research identified , a structural analog of the potent GPX4 inhibitor RSL3, that has much better plasma stability ( > 5 h in mouse plasma). The bioavailability of provided efficacious plasma drug concentrations with IP dosing, thus enabling studies to assess tolerability and efficacy.

View Article and Find Full Text PDF

Aberrant gene activation driven by the histone acetyltransferases p300 and CREB binding protein (CBP) has been linked to several diseases, including cancers. Because of this, many efforts have been aimed toward the targeting of the closely related paralogues, p300 and CBP, but these endeavors have been exclusively directed toward noncovalent inhibitors. X-ray crystallography of revealed that both p300 and CBP possess a cysteine (C1450) near the active site, thus rendering covalent inhibition an attractive chemical approach.

View Article and Find Full Text PDF

p300 and CREB-binding protein (CBP) are essential for a multitude of cellular processes. Dysregulation of p300/CBP histone acetyltransferase activity is linked to a broad spectrum of human diseases including cancers. A novel drug-like spirohydantoin (21) has been discovered as a selective orally bioavailable inhibitor of p300/CBP histone acetyltransferase.

View Article and Find Full Text PDF