Pharmaceutically active compounds are common and increasing in the aquatic environment. Evidence suggests they have adverse effects on non-target organisms, and they are classified as emerging pollutants for a variety of aquatic organisms. To determine the effects of environmentally relevant levels of psychoactive compounds on non-target organisms, we analyzed cardiac and locomotory activity in early developmental stages of marbled crayfish Procambarus virginalis.
View Article and Find Full Text PDFPersonal care products, including organic UV filters, are considered emerging contaminants, with their toxic effects being a concern in recent decades. UV filters continually enter surface waters via wastewater and human activity. Despite the presence of organic UV filters in the freshwater environment, little is known of their impact on aquatic biota.
View Article and Find Full Text PDFAlthough pesticides are often discharged into surface waters in pulses as opposed to a sustained release, the effect of episodic pollution events on freshwater crayfish is largely unknown. We monitored change in heart rate and distance moved to assess the response of signal crayfish Pacifastacus leniusculus to short-term exposure to environmentally relevant concentrations of metazachlor (MTZ), terbuthylazine (TER), and thiacloprid (TCL). Crayfish exposed to 20 µg/L of MTZ exhibited a significant increase in mean heart rate and distance moved.
View Article and Find Full Text PDFPhenotypic plastic responses to temperature can modulate the kinetic effects of temperature on biological rates and traits and thus play an important role for species adaptation to climate change. However, there is little information on how these plastic responses to temperature can influence trophic interactions. Here, we conducted an experiment using marbled crayfish and their water louse prey to investigate how short-term thermal acclimation at two temperatures (16 and 24°C) modulates the predator functional response.
View Article and Find Full Text PDFThe Chievitz juxtaparotid organ represents a macroscopic longitudinal formation, which is developed from oral cavity ectoderm in its lateral wall. As to its function, the organ probably represents a mechanosensor with different qualities of perception. The information coming from its sensors takes part in different activities of the lateral wall of oral cavity during sucking, swallowing, mastication, speech, protecting reflexes and wall tonus.
View Article and Find Full Text PDF