Since the accident at the Fukushima Daiichi nuclear power plant (FDNPP) in March 2011 seawater is still needed to cool the reactor cores. This water, contaminated with radionuclides, has been collected in tanks and treated on the site of the FDNPP. In 2021, the Japanese government decided to gradually discharge treated water into the ocean, which started on the 24th of August 2023 and will continue for the next 30 years.
View Article and Find Full Text PDFAccurate assessment of the radiological impact of liquid discharges on the marine environment is challenging despite all developments in recent years. The lack of consensus on this type of assessment manifests itself even stronger when transborder issues are expected, such as in the Low Countries. Belgium and the Netherlands operate nuclear power plants with discharges in the shared estuary of the Western Scheldt, therefore if there are safety concerns, information on both sides of the border must be coherent.
View Article and Find Full Text PDFLagrangian models present several advantages over Eulerian models to simulate the transport of radionuclides in the aquatic environment in emergency situations. A radionuclide release is simulated as a number of particles whose trajectories are calculated along time and thus these models do not require a spatial discretization (although it is always required in time). In this paper we investigate the dependence of a Lagrangian model output with the grid spacing which is used to calculate concentrations from the final distribution of particles, with the number of particles in the simulation and with the interpolation schemes which are required because of the discrete nature of the water circulation data used to feed the model.
View Article and Find Full Text PDFThe radiological impact for human and aquatic biota as a result of a planned release of contaminated water stored in tanks near the Fukushima Dai-ichi Nuclear Power Plant to the Pacific Ocean is assessed. The total activity for 10 dominant radionuclides (H, C, Co, Sr, Tc, Ru, Sb, I, Cs, Cs) in tanks is estimated. The compartment model POSEIDON-R is applied to compute the concentration of activity for each radionuclide in water, bottom sediments, and biota, and corresponding doses to marine organisms and humans from seafood consumption.
View Article and Find Full Text PDF