Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate.
View Article and Find Full Text PDFThe pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical.
View Article and Find Full Text PDFNon-small cell lung cancers (NSCLC) harboring common mutations in EGFR and KRAS characteristically respond transiently to targeted therapies against those mutations, but invariably, tumors recur and progress. Resistance often emerges through mutations in the therapeutic target or activation of alternative signaling pathways. Mechanisms of acute tumor cell resistance to initial EGFR (EGFRi) or KRAS (G12Ci) pathway inhibition remain poorly understood.
View Article and Find Full Text PDFBackground: Among patients with opioid use disorder (OUD), high rates of overdose and death have been reported in subgroups with Hepatitis C Virus (HCV). Evidence on the comorbid effect of HCV on clinical and substance use trajectories has been limited by small sample sizes, short follow-up, and heavy reliance on administrative data which lacks granularity on important prognostic factors. Additionally, few studies include populations on substance use treatment.
View Article and Find Full Text PDF