Publications by authors named "V M Shabaev"

Adsorption energies, , of oxides and oxyhydrides of the superheavy element (SHEs) Ts and of its lighter homologue At on the gold surface are predicted on the basis of relativistic periodic density functional theory calculations AMS BAND software. The following compounds were considered: MO, MO, MOO, and MO(OH) (where M = At and Ts). The aim of this study is to support "one-atom-at-a-time" gas-phase chromatography experiments on reactivity/volatility of SHEs.

View Article and Find Full Text PDF

Adsorption energies, , of the 7th row superheavy elements (SHEs) Lv through Og, as well as of the homologous species of the 6th row elements Po through Rn on a gold surface are predicted on the basis of relativistic periodic density functional theory calculations SCM BAND software. Since some of the elements can also form compounds such as hydrides and oxyhydrides under experimental conditions, the values of the MH (M = Bi/Mc, Po/Lv, At/Ts and Rn/Og) and MOH (M = At/Ts and Rn/Og) molecules on a gold surface were also calculated. The aim of this study is to support "one-atom-at-a-time" gas-phase chromatography experiments on the reactivity/volatility of SHEs.

View Article and Find Full Text PDF

Calculations of spectroscopic properties of the CnO and FlO molecules are performed using ab initio all-electron 4c- and 2c-relativistic coupled-cluster approaches with single, double, and perturbative triple excitations. The corresponding calculation for HgO is also accomplished for comparison with the published data. The dependence of the results on the parameters of the basis set and approximations used is investigated in detail.

View Article and Find Full Text PDF

A method is proposed to determine the M1 nuclear transition amplitude and hence the lifetime of the "nuclear clock transition" between the low-lying (∼8  eV) first isomeric state and the ground state of ^{229}Th from a measurement of the ground-state g factor of few-electron ^{229}Th ions. As a tool, the effect of nuclear hyperfine mixing in highly charged ^{229}Th ions such as ^{229}Th^{89+} or ^{229}Th^{87+} is used. The ground-state-only g-factor measurement would also provide first experimental evidence of nuclear hyperfine mixing in atomic ions.

View Article and Find Full Text PDF

The strong mixing of close levels with two valence electrons in Be-like xenon greatly complicates ab initio QED calculations beyond the first-order approximation. Because of a strong interplay between the electron-electron correlation and QED effects, the standard single-level perturbative QED approach may fail, even if it takes into account the second-order screened QED diagrams. In the present Letter, the corresponding obstacles are overcome by working out the QED perturbation theory for quasidegenerate states.

View Article and Find Full Text PDF