Membranes are a critical technology for energy-efficient separation processes. The routine method of evaluating membrane performance is a permeation measurement. However, such measurements can be limited in terms of their utility: membrane microstructure is often poorly characterized; membranes or sealants leak; and conditions in the gas phase are poorly controlled and frequently far-removed from the conditions employed in the majority of real processes.
View Article and Find Full Text PDFThe aim of this study was to develop and calibrate a macroporous ceramic passive sampler (MCPS) for the monitoring of anticancer drugs in wastewater. This system was designed by the Spanish Research Council (CSIC) and consists in a porous ceramic tube to allow a high diffusion of contaminants. The MCPS has been calibrated for 16 cytostatic drugs over time periods up to 9 d in spiked water under controlled laboratory conditions.
View Article and Find Full Text PDFWe present and analyze the unique phenomena of enhanced THz transmission through a subwavelength LiF dielectric rod lattice embedded in an epsilon-near-zero KCl host. Our experimental results in combination with theoretical calculations show that subwavelength waveguiding of terahertz radiation is achieved within an alkali-halide eutectic metamaterial as result of the coupling of Mie-resonance modes arising in the dielectric lattice.
View Article and Find Full Text PDFIn this paper we discuss the fabrication and the electromagnetic (EM) characterization of anisotropic eutectic metamaterials, consisting of cylindrical polaritonic LiF rods embedded in either KCl or NaCl polaritonic host. The fabrication was performed using the eutectics directional solidification self-organization approach. For the EM characterization the specular reflectance at far infrared, between 3 THz and 11 THz, was measured and also calculated by numerically solving Maxwell equations, obtaining good agreement between experimental and calculated spectra.
View Article and Find Full Text PDFThe availability of macroscopic, nearly periodic structures known as eutectics opens a new path for controlling light at wavelength scales determined by the geometrical parameters of these materials and the intrinsic properties of their component phases. Here, we analyze the optical waveguiding properties of eutectic mixtures of alkali halides, formed by close-packed arrangements of aligned cylindrical inclusions. The wavelengths of phonon polaritons in these constituents are conveniently situated in the infrared and are slightly larger than the diameter and separation of the inclusions, typically consisting on single-crystal wires down to submicrometer diameter.
View Article and Find Full Text PDF