The spin-spin relaxation in connective tissues is simulated using a model in which a connective tissue is represented by a set of nanocavities containing HO-DO liquid. Collagen fibrils in connective tissues form ordered hierarchical long structures of hydrated nano-cavities with characteristic diameter from 1 nm to several tens of nanometers and length of about 100 nm. We consider influence of the restricted Brownian motion of molecules inside a nano-cavity on spin-spin relaxation.
View Article and Find Full Text PDFThis study investigates the fibril nanostructure of fresh celery samples by modeling the anisotropic behavior of the transverse relaxation time (T) in nuclear magnetic resonance (NMR). Experimental results are interpreted within the framework of a previously developed theory, which was successfully used to model the nanostructures of several biological tissues as a set of water filled nanocavities, hence explaining the anisotropy the T relaxation time in vivo. An important feature of this theory is to determine the degree of orientational ordering of the nanocavities, their characteristic volume, and their average direction with respect to the macroscopic sample.
View Article and Find Full Text PDFWe studied the anisotropy of H NMR spin-lattice and spin-spin relaxations in a fresh celery stem experimentally and modeled the sample theoretically as the water-containing nano- and micro-cavities. The angular dependence of the spin-lattice and the spin-spin relaxation times was obtained, which clearly shows the presence of water-filled nano- and micro-cavities in the celery stem, which have elongated shapes and are related to non-spherical vascular cells in the stem. To explain the experimental data, we applied the relaxation theory developed by us and used previously to interpret similar effects in liquids in nanocavities located in biological tissues such as cartilages and tendons.
View Article and Find Full Text PDFWe analyze the application of the spin locking method to study the spin dynamics and spin-lattice relaxation of nuclear spins-1/2 in liquids or gases enclosed in a nano-cavity. Two cases are considered: when the amplitude of the radio-frequency field is much greater than the local field acting the nucleus and when the amplitude of the radio-frequency field is comparable or even less than the local field. In these cases, temperatures of two spin reservoirs, the Zeeman and dipole ones, change in different ways: in the first case, temperatures of the Zeeman and dipolar reservoirs reach the common value relatively quickly, and then turn to the lattice temperature; in the second case, at the beginning of the process, these temperatures are equal, and then turn to the lattice temperature with different relaxation times.
View Article and Find Full Text PDFWe propose transfer of the paramagnetic impurity (PI) polarization to nuclei in bulk, outside the diffusion barrier, by using dipolar system of the nuclear spins. The transfer can overcome influence of the diffusion barrier and is proposed to be implemented in four stages. At the first stage, transition of the Zeeman PI order to the Zeeman order of nuclear spins inside the spin-diffusion barrier is occurred.
View Article and Find Full Text PDF