Publications by authors named "V M Kravtsova"

Ionizing radiation (IR) causes disturbances in the functions of the gastrointestinal tract. Given the therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against IR-induced disturbances in the barrier and transport properties of the jejunum and colon of rats. Male Wistar rats were subjected to 6-day intraperitoneal injections of vehicle or ouabain (1 µg/kg/day).

View Article and Find Full Text PDF

The Na,K-ATPase plays an important role in adaptation to hypoxia. Prolonged hypoxia results in loss of skeletal muscle mass, structure, and performance. However, hypoxic preconditioning is known to protect against a variety of functional impairments.

View Article and Find Full Text PDF

Several local Ca events are characterized in smooth muscle cells. We have previously shown that an inhibitor of the Na,K-ATPase, ouabain induces spatially restricted intracellular Ca transients near the plasma membrane, and suggested the importance of this signaling for regulation of intercellular coupling and smooth muscle cell contraction. The mechanism behind these Na,K-ATPase-dependent "Ca flashes" remains to be elucidated.

View Article and Find Full Text PDF

The damaging effect of ionizing radiation (IR) on skeletal muscle Na,K-ATPase is an open field of research. Considering a therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against the IR-induced disturbances of Na,K-ATPase function in rat diaphragm muscle that co-expresses the α1 and α2 isozymes of this protein. Male Wistar rats ( = 26) were subjected to 6-day injections of vehicle (0.

View Article and Find Full Text PDF

Sustained sarcolemma depolarization due to loss of the Na,K-ATPase function is characteristic for skeletal muscle motor dysfunction. Ouabain, a specific ligand of the Na,K-ATPase, has a circulating endogenous analogue. We hypothesized that the Na,K-ATPase targeted by the elevated level of circulating ouabain modulates skeletal muscle electrogenesis and prevents its disuse-induced disturbances.

View Article and Find Full Text PDF