Purines and their derivatives control intracellular energy homeostasis and nucleotide synthesis, and act as signaling molecules. Here, we combine structural and sequence information to define a purine-binding motif that is present in sensor domains of thousands of bacterial receptors that modulate motility, gene expression, metabolism, and second-messenger turnover. Microcalorimetric titrations of selected sensor domains validate their ability to specifically bind purine derivatives, and evolutionary analyses indicate that purine sensors share a common ancestor with amino-acid receptors.
View Article and Find Full Text PDFBacteria sense changes in their environment and transduce signals to adjust their cellular functions accordingly. For this purpose, bacteria employ various sensors feeding into multiple signal transduction pathways. Signal recognition by bacterial sensors is studied mainly in a few model organisms, but advances in genome sequencing and analysis offer new ways of exploring the sensory repertoire of many understudied organisms.
View Article and Find Full Text PDFPurines and their derivatives are key molecules for controlling intracellular energy homeostasis and nucleotide synthesis. In eukaryotes, including humans, purines also act as signaling molecules that mediate extracellular communication and control key cellular processes, such as proliferation, migration, differentiation, and apoptosis. However, the signaling role of purines in bacteria is largely unknown.
View Article and Find Full Text PDFBacteria possess various receptors that sense different signals and transmit information to enable an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Signals recognized by sensor domains are poorly reflected in overall sequence identity, and therefore, the identification of signals from the amino acid sequence of the sensor alone presents a challenge.
View Article and Find Full Text PDFSignal transduction systems in bacteria and archaea link environmental stimuli to specific adaptive cellular responses. They control gene expression, motility, biofilm formation, development and other processes that are vital to survival. The microbial signal transduction (MiST) database is an online resource that stores tens of thousands of genomes and allows users to explore their signal transduction profiles, analyze genomes in bulk using the database application programming interface (API) and make testable hypotheses about the functions of newly identified signaling systems.
View Article and Find Full Text PDF