Publications by authors named "V M Correlo"

Ochratoxin-A (OTA) is a widespread foodstuff contaminant with potential carcinogenic effects. Innovative sensing technologies that allow on-site and sensitive food screening can have a significant impact on food and environment safety. A novel and quantitative label-free LSPR-based biosensor was specifically designed for OTA detection, employing a portable LSPR spectroscopy sensing system for efficient on-site and cost-effective analysis.

View Article and Find Full Text PDF

There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells.

View Article and Find Full Text PDF

Osteosarcoma conventional chemotherapeutics are known for their side effects, limited options, and induction of drug resistance. This creates the need to develop new therapeutics capable of effectively destroying cancer cells with low toxicity, improving patient survival rate and their life quality. This work reports a novel drug delivery nanoplataform made of Natural Melanin Nanoparticles (MNPs), obtained from Sepia officinalis ink, with 99% incorporation efficiency of doxorubicin (Dox) without the use of non-toxic solvents.

View Article and Find Full Text PDF

Injuries and damage to the skin can be caused by different reasons throughout human life. The use of sodium alginate in tissue dressing has been highly studied due to its intrinsic properties, including its degradation rate and biocompatibility, and the capacity of supporting tissue proliferation. The aim of this paper is to demonstrate evidences, through a systematic review method, to support the application of sodium alginate as a curative and as a potential accelerator in the healing of skin wounds.

View Article and Find Full Text PDF

Background: volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery.

View Article and Find Full Text PDF