African swine fever (ASF) is a lethal hemorrhagic disease of , i.e., domestic pigs and wild boars, caused by African swine fever virus (ASFV).
View Article and Find Full Text PDFThe extreme genetic and immunobiological heterogeneity exhibited by the African swine fever virus (ASFV) has been a significant impediment in the development of an efficacious vaccine against this disease. Consequently, the lack of internationally accepted protocols for the laboratory evaluation of candidate vaccines has become a major concern within the scientific community. The formulation of such protocols necessitates the establishment of a consensus at the international level on methods for the determination of homologous and heterologous isolates/strains of ASFV.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is an extremely genetically and phenotypically heterogeneous pathogen. Previously, we have demonstrated that experimental inoculation of pigs with an attenuated strain, Katanga-350 (genotype I, seroimmunotype I) (ASFV-Katanga-350), can induce protective immunity in 80% of European domestic pigs against the homologous virulent European strain Lisbon-57. At least 50% of the surviving pigs received protection from subsequent intramuscular infection with a heterologous virulent strain, Stavropol 01/08 (genotype II, seroimmunotype VIII) (ASFV-Stavropol 01/08).
View Article and Find Full Text PDFThis article summarizes the study results on the generation of attenuated strains of African swine fever virus (ASFV) of seroimmunotypes I-VIII and the creation of live vaccines for temporary protection of pigs during a period of epizootics in the surveillance zone (a zone adjacent to the area of outbreak). These studies were initiated at the Federal Research Center for Virology and Microbiology (FRCVM, formerly VNIIVViM) at the time of introduction of the pathogen to the Iberian Peninsula in the middle of the 20th century. The developed experimental vaccines against ASFV seroimmunotypes I-V provided protection against virulent strains of homologous seroimmunotypes by day 14 after vaccination, lasting at least four months.
View Article and Find Full Text PDFObjectives: The aim of the current study was to develop biodegradable alginate (ALG)/poly-L-lysine (PLL) microcapsules (MC) with entrapped plasmids expressing Gn and Gc glycoproteins of Rift Valley Fever virus (RVFV) and to evaluate the humoral immune response in mice.
Results: Expressing phRVF/Gn and phRVF/Gc plasmids which encode full-sized Gn and Gc glycoproteins and contain signal fusion protein F sequences of human parainfluenza (HPIV-1) were constructed. To protect the plasmids from cleavage by extracellular nucleases, they were entrapped into multilayer ALG/PLL microcapsules by layer-by-layer technique.