Background: Thalamocortical functional and structural connectivity alterations may contribute to clinical phenotype of Autism Spectrum Disorder (ASD). As previous studies focused mainly on thalamofrontal connections in ASD, we comprehensively investigated the thalamic functional networks and white matter pathways projecting also to temporal, parietal, occipital lobes and their associations with core and co-occurring conditions of this population.
Methods: A total of 38 children (19 with ASD) underwent magnetic resonance imaging and behavioral assessment.
Objective: Some studies have hypothesized that atypical neural synchronization at the delta frequency band in the auditory cortex is associated with phonological and language skills in children with Autism Spectrum Disorder (ASD), but it is still poorly understood. This study investigated this neural activity and addressed the relationships between auditory response and behavioral measures of children with ASD.
Methods: We used magnetoencephalography and individual brain models to investigate 2 Hz Auditory Steady-State Response (ASSR) in 20 primary-school-aged children with ASD and 20 age-matched typically developing (TD) controls.
One of the candidate genes related to language variability in individuals with Autism Spectrum Disorder (ASD) is the contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin family. However, due to the different assessment tools used, it is unknown whether the polymorphisms of the CNTNAP2 gene are linked to structural language skills or more general communication abilities. A total of 302 youth aged 7 to 18 years participated in the present study: 131 verbal youth with ASD (62 female), 130 typically developing (TD) youth (64 female), and 41 unaffected siblings (US) of youth with ASD (25 female).
View Article and Find Full Text PDFThe neurobiology of Autism Spectrum Disorder (ASD) is hypothetically related to the imbalance between neural excitation (E) and inhibition (I). Different studies have revealed that alpha-band (8-12 Hz) activity in magneto- and electroencephalography (MEG and EEG) may reflect E and I processes and, thus, can be of particular interest in ASD research. Previous findings indicated alterations in event-related and baseline alpha activity in different cortical systems in individuals with ASD, and these abnormalities were associated with core and co-occurring conditions of ASD.
View Article and Find Full Text PDF