Publications by authors named "V L Whitehall"

Adoption of organoid/tumoroid propagation of normal and malignant intestinal epithelia has provided unparalleled opportunities to compare cell growth factor and signaling dependencies. These 3D structures recapitulate tumours in terms of gene expression regarding the tumor cells but also allow deeper insights into the contribution of the tumour microenvironment (TME). Elements of the TME can be manipulated or added back in the form of infiltrating cytotoxic lymphocytes and/or cancer associated fibroblasts.

View Article and Find Full Text PDF

Colorectal cancer is one of the world's most prevalent and lethal cancers. Mutations of the KRAS gene occur in ~40% of metastatic colorectal cancers. While this cohort has historically been difficult to manage, the last few years have shown exponential growth in the development of selective inhibitors targeting KRAS mutations.

View Article and Find Full Text PDF

Colorectal cancer is an important cause of morbidity and mortality worldwide. The current treatment landscape includes chemotherapy, targeted therapy, immunotherapy, radiotherapy, and surgery. A key challenge to improving patient outcomes is the significant inter-patient heterogeneity in treatment response.

View Article and Find Full Text PDF

Researching the murine epigenome in disease models has been hampered by the lack of appropriate and cost-effective DNA methylation arrays. Here we perform a comprehensive, comparative analysis between the Mouse Methylation BeadChip (MMB) and reduced-representation bisulfite sequencing (RRBS) in two murine models of colorectal carcinogenesis. We evaluate the coverage, variability, and ability to identify differential DNA methylation of RRBS and MMB.

View Article and Find Full Text PDF

Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis.

View Article and Find Full Text PDF