The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles.
View Article and Find Full Text PDFBy combining in situ X-ray diffraction, Zr K-edge X-ray absorption spectroscopy and H and C nuclear magnetic resonance (NMR) spectroscopy, we show that the properties of the final MOF are influenced by HO and HCl via affecting the nucleation and crystal growth at the molecular level. The nucleation implies hydrolysis of monomeric zirconium chloride complexes into zirconium-oxo species, and this process is promoted by HO and inhibited by HCl, allowing to control crystal size by adjusting HO/Zr and HCl/Zr ratios. The rate-determining step of crystal growth is represented by the condensation of monomeric and oligomeric zirconium-oxo species into clusters, or nodes, with the structure identical to that in secondary building units (SBU) of UiO-66 framework.
View Article and Find Full Text PDFRevisiting the impact of the first and often deemed trivial postsynthetic step, i.e., a high-temperature oxidative calcination to remove organic templates, increases our understanding of thermal acid site evolution and Al distributions.
View Article and Find Full Text PDFThe CH oxidation performance of Cu-chabazite zeolites characterized by distinct Si/Al ratios and Cu loadings has been studied and the observed variations in reactivity have been correlated to the differences in the nature of the formed active centers. Plug flow reactor tests, in situ Fourier-transform infrared, and X-ray absorption spectroscopy demonstrate that a decrease in Cu loading shifts the reactivity/redox profile to higher temperatures and increases the CHOH selectivity and Cu-efficiency. In situ electron paramagnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared, and photoluminescence spectroscopies reveal that this behavior is associated with the presence of monomeric Cu active sites, including bare Cu and [CuOH] present at low Si/Al ratio and Cu loading.
View Article and Find Full Text PDFCopper(II)-containing mordenite (CuMOR) is capable of activation of C-H bonds in C -C alkanes, albeit there are remarkable differences between the functionalization of ethane and propane compared to methane. The reaction of ethane and propane with CuMOR results in the formation of ethylene and propylene, while the reaction of methane predominantly yields methanol and dimethyl ether. By combining in situ FTIR and MAS NMR spectroscopies as well as time-resolved Cu K-edge X-ray absorption spectroscopy, the reaction mechanism was derived, which differs significantly for each alkane.
View Article and Find Full Text PDF