Publications by authors named "V L Pascali"

The aim of this study is to investigate the potential of radiomic features extracted from postmortem computed tomography (PMCT) scans of the lateral cerebral ventricles (LCVs) to provide information on the time since death, or postmortem interval (PMI), a critical aspect of forensic medicine. Periodic PMCT scans, referred to as "sequential scans", were obtained from twelve corpses with known times of death, ranging from 5.5 to 273 h postmortem.

View Article and Find Full Text PDF

Boron Neutron Capture Therapy (BNCT) is an innovative and highly selective treatment against cancer. Nowadays, in vivo boron dosimetry is an important method to carry out such therapy in clinical environments. In this work, different imaging methods were tested for dosimetry and tumor monitoring in BNCT based on a Compton camera detector.

View Article and Find Full Text PDF

Determining the post-mortem interval (PMI) is one of forensic pathology's primary objectives and one of its most challenging tasks. Numerous studies have demonstrated the accuracy of histomorphology and immunohistochemical investigations in determining the time of death. Nevertheless, the skin, a robust and easy-to-remove tissue, has only been partially analyzed so far.

View Article and Find Full Text PDF

The ability to identify the broadest range of targetable gene fusions is crucial to facilitate personalized therapy selection for advanced lung adenocarcinoma (LuADs) patients harboring targetable receptor tyrosine kinase (RTK) genomic alterations. In order to evaluate the most effective testing approach for LuAD targetable gene fusion detection, we analyzed 210 NSCLC selected clinical samples, comparing in situ (Fluorescence In Situ Hybridization, FISH, and ImmunoHistoChemistry, IHC) and molecular (targeted RNA Next-Generation Sequencing, NGS, and RealTime-PCR, RT-PCR) approaches. The overall concordance among these methods was high (>90%), and targeted RNA NGS was confirmed to be the most efficient technique for gene fusion identification in clinical practice, allowing the simultaneous analysis of a large set of genomic rearrangements at the RNA level.

View Article and Find Full Text PDF