The normal function of the mammalian reproductive axis is strongly influenced by physiological, metabolic and environmental factors. Kisspeptin neuropeptides, encoded by the Kiss1 gene, are potent regulators of the mammalian reproductive axis by stimulating gonadodropin releasing hormone secretion from the hypothalamus. To understand how the reproductive axis is modulated by higher order neuronal inputs we have mapped the afferent circuits into arcuate (ARC) Kiss1 neurons.
View Article and Find Full Text PDFKey Points: Neurons in the hypothalamus of the brain which secrete the peptide kisspeptin are important regulators of reproduction, and normal reproductive development. Electrical activity, in the form of action potentials, or spikes, leads to secretion of peptides and neurotransmitters, influencing the activity of downstream neurons; in kisspeptin neurons, this activity is highly irregular, but the mechanism of this is not known. In this study, we show that irregularity depends on the presence of a particular type of potassium ion channel in the membrane, which opens transiently in response to electrical excitation.
View Article and Find Full Text PDFJ Neuroendocrinol
November 2016
Kisspeptin neuropeptides are encoded by the Kiss1 gene and play a critical role in the regulation of the mammalian reproductive axis. Kiss1 neurones are found in two locations in the rodent hypothalamus: one in the arcuate nucleus (ARC) and another in the RP3V region, which includes the anteroventral periventricular nucleus (AVPV). Detailed mapping of the fibre distribution of Kiss1 neurones will help with our understanding of the action of these neurones in other regions of the brain.
View Article and Find Full Text PDFThe Mfsd14a gene, previously called Hiat1, encodes a transmembrane protein of unknown function with homology to the solute carrier protein family. To study the function of the MFSD14A protein, mutant mice (Mus musculus, strain 129S6Sv/Ev) were generated with the Mfsd14a gene disrupted with a LacZ reporter gene. Homozygous mutant mice are viable and healthy, but males are sterile due to a 100-fold reduction in the number of spermatozoa in the vas deferens.
View Article and Find Full Text PDFIntroduction: Kisspeptins, encoded by the Kiss1 gene, are a set of related neuropeptides that are required for activation of the mammalian reproductive axis at puberty and to maintain fertility. In addition, kisspeptin signaling via the G-protein coupled receptor GPR54 (KISS1R) has been suggested to regulate human placental formation and correlations have been found between altered kisspeptin levels in the maternal blood and the development of pre-eclampsia.
Methods: We have used Kiss1 and Gpr54 mutant mice to investigate the role of kisspeptin signaling in the structure and function of the mouse placenta.