Thrombin-binding aptamer (TBA) is a 15-nt DNA oligomer that efficiently inhibits thrombin. It has been shown that TBA folds into an anti-parallel unimolecular G-quadruplex. Its three-dimensional chair-like structure consists of two G-tetrads connected by TT and TGT loops.
View Article and Find Full Text PDFA series of DNA aptamers bearing triazole internucleotide linkages that bind to thrombin was synthesized. The novel aptamers are structurally analogous to the well-known thrombin-inhibiting G-quadruplexes TBA15 and TBA31. The secondary structure stability, binding affinity for thrombin and anticoagulant effects of the triazole-modified aptamers were measured.
View Article and Find Full Text PDFNew oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis.
View Article and Find Full Text PDFNucleic Acids Res
September 2012
Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and non-canonical homologous hydrogen bonding.
View Article and Find Full Text PDFA simple and stereoselective synthesis of a protected 4-(aminomethyl)-1-(2-deoxy-β-D-ribofuranosyl)-1,2,3-triazole cyanoethyl phosphoramidite was developed for the modification of synthetic oligonucleotides. The configuration of the 1,2,3-triazolyl moiety with respect to the deoxyribose was unambiguously determined in ROESY experiments. The aminomethyl group of the triazolyl nucleotide was fully functional in labelling reactions.
View Article and Find Full Text PDF